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Received: 28 September 2001
Communicated by A. Schäfer

Abstract. We perform a study of the final-state interactions of the K+K̄0 and the K̄0d systems in the
reactions pp → dK+K̄0 and pp → dπ+η. Since the two-meson system couples strongly to the a0(980)
resonance, these reactions are expected to be an additional source of information about the controversial
scalar sector. We also show that these reactions present peculiar features which can shed additional light
on the much debated meson-baryon scalar sector with strangeness −1. We deduce the general structure
of the amplitudes close to the dK+K̄0 threshold, allowing for primary K+K̄0 as well as π+η production
with the two mesons in relative S- or P -wave. The interactions of the mesons are accounted for by using
chiral unitary techniques, which generate dynamically the a0(980) resonance, and the K̄0d interaction is
also taken into account. General formulae are derived that allow to incorporate the final-state interactions
in these systems for any model of the production mechanism. We illustrate this approach by considering
two specific production mechanisms based on three flavor meson-baryon chiral perturbation theory. It is
demonstrated that in this scenario the K̄0d interactions are very important and can change the cross-
section by as much as one order of magnitude. The amount of π+η versus K+K̄0 production is shown
to depend critically on the primary mixture of the two mechanisms, with large interference effects due to
final-state interactions. These effects are also shown to occur in the event distributions of invariant masses
which are drastically modified by the final-state interactions of the two-meson or the K̄d system.

PACS. 12.39.Fe Chiral Lagrangians – 13.75.Lb Meson-meson interactions – 13.75.Gx Kaon-baryon inter-
actions

1 Introduction

The reaction pp → dK+K̄0 is presently the subject of
experimental study by the ANKE collaboration at the
Cooler Synchrotron COSY at Jülich with the aim (among
others) of learning about the nature and properties of
the a0(980) resonance [1]. The problem has attracted also
the interest of theoretical groups [2,3](see furthermore the
contributed papers in [4]). The prospect of gaining novel
information about the a0(980) resonance, which might
help to shed further light from the experimental side on
the disputed nature of this resonance, is one of the attrac-
tive features of this reaction. This controversy originates
from the observation that there are several different mod-
els to deal with the isospin I = 0, 1 scalar sector, all of
them reproducing the scattering data to some extent, but
with different conclusions with respect to the origin of the
underlying dynamics. In particular, in refs. [5–9] these res-
onances are considered as preexisting ones (genuine quark
model states), while in ref. [10] they appear as meson-
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meson resonances generated by a potential. In ref. [11]
the advocated solution is that the a0(980) and the f0(980),
the latter in the channel with I = 0, are exotic resonances,
that is, not simply qq̄ states, while the preexisting qq̄ scalar
nonet should be heavier, around 1.4 GeV or so. Other in-
teresting approaches to this problem are refs. [12–16], the
relativistic quark model with an instanton-induced inter-
action of the Bonn group [17], the Jülich meson-exchange
approach [18], the Inverse Amplitude Method [19] or some
variants of it [20]. It is notorious that opposite conclusions
are obtained in refs. [21,22] from the use of QCD sum
rules. Regarding this controversy about the nature of the
scalar resonances, the works of refs. [23–28] have stressed
the role of chiral symmetry and unitarity to understand
the dynamics associated with the lowest-lying scalar res-
onances (see also [13]). As a result of the latter references
the lightest 0++ nonet is established to be of dynami-
cal origin, i.e. made up of meson-meson resonances, and
is formed by the σ(500), κ, a0(980) and a strong contri-
bution to the physical f0(980). On the other hand, the
preexisting scalar nonet would be made up by an octet
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around 1.4 GeV and a singlet contributing to the physical
f0(980) resonance. Similar conclusions about the nature
of the scalar resonances have been obtained in ref. [21] for
the channels with isospin 0 and 1 within QCD sum rules.
The previous set of works [23–28] constitute a unique the-
oretical approach to the scalar sector capable to study all
these reactions in a unified way. This is achieved because
all these processes are related by the use of an effective
theory description that combines chiral perturbation the-
ory and unitarity constraints.

It is important to remark, as already pointed out in
ref. [12], that it is mandatory to study not only the ex-
perimental data concerning phase shifts and inelasticities
related to meson-meson scattering but also production re-
actions where the interactions between the mesons mani-
fest themselves through the final-state interactions (FSI).
This was indeed the subject of refs. [25–28] and plays a
key role in the present investigation.

In the baryon sector the studies of [29–31] based on
the use of chiral Lagrangians also show that the Λ(1405)
resonance is generated in a similar way. The fact that
the Λ(1405) is of dynamical origin was pointed out al-
ready many years ago [32]. More recently it has also been
shown [33] that the Λ(1670) and the Σ(1620) are gener-
ated dynamically in the same chiral scheme of [30]. Still,
in this sector more work is needed to firmly establish these
results.

As we will see, the reaction pp → dPQ (where P,Q de-
note pseudoscalar mesons) offers novel possibilities with
respect to other reactions where the a0(980) resonance
is produced since it is sensitive to both the meson-meson
and meson-baryon final-state interactions. In particular,
we stress the importance of the K̄d FSI, which has a very
pronounced influence on observable yields, invariant-mass
distributions or cross-sections, mostly through the inter-
ference with the meson-meson FSI (which gives rise to the
a0(980)). This should provide extra information to test
the implications of chiral symmetry on the nature of the
low-lying resonances.

The manuscript is organized as follows. In sect. 2,
we discuss the basic reaction mechanisms for the process
pp → dPQ, first in very general terms and then we con-
sider a specific model based on chiral symmetry for the
primary production of the meson pair. The final-state in-
teractions are treated in sect. 3, separately for the meson-
meson and the meson-baryon systems. We stress in par-
ticular the role of the antikaon-deuteron FSI. The results
are presented and discussed in sect. 4 and conclusions are
drawn in sect. 5. The appendix contains a detailed discus-
sion on the general structure of the process pp → dPQ.

2 Basic reaction mechanisms

2.1 General considerations

The reaction measured in [1] is:

pp → dK+K̄0 . (1)

We will study it theoretically in connection with the ac-
companying process

pp → dπ+η , (2)

since the dynamics of coupled channels, which we will
use here, deals with both channels simultaneously. On the
other hand, the energy of the ANKE experiment is fixed to√

s = 2912.88 MeV just about 45 MeV above the dK+K̄0

threshold.
The reaction (1) forces the K+K̄0 system to be in a

I = 1 state which, given the proximity of the a0(980) res-
onance, would have its rate of production and invariant-
mass distributions very much influenced by the tail of that
resonance. The reaction (2), which is also planned to be
measured by the ANKE collaboration, could see the actual
shape of the a0(980) resonance through the mass distri-
bution of the π+η system.

The P -wave nature of the reaction [2,3] is another pe-
culiar feature that makes it different to other ones pro-
ducing the a0(980) [34,35]. Indeed, due to total angular
momentum and parity conservation as well as to the an-
tisymmetry of the initial state, the two mesons cannot be
simultaneously in intrinsic S-wave and in S-wave relative
to the deuteron. Henceforth, we denote by � the orbital
angular momentum of the CM motion of the two pseu-
doscalars PQ and the deuteron, and by L the orbital an-
gular momentum of the pseudoscalar mesons in their own
CM frame, what we also call intrinsic angular momentum
of the two mesons. With this notation the cases � = 1,
L = 0 and � = 0, L = 1 are possible and then the initial
state is forced to have �0 = 1, 3 and S = 1, with �0 denot-
ing the orbital angular momentum of the initial pp state.
These are the dominant contributions since they imply
the lowest power, namely 1, of the small three-momenta
of the deuteron or kaons in the transition amplitudes. Of
course, the threshold of the reaction (2) is much lower
than the one of (1) but due to the resonant nature of the
interactions between the pseudoscalars, which only occurs
when both π+η and K+K̄0 are coupled together [23,24,
19], we will consider the same structures as well for (2).
Even more, since the π+η system is expected to couple
only very weakly to the P -waves then only the structure
with � = 1, L = 0 is kept for π+η. The fact that either
� = 1 or L = 1 has its relevance since, close to thresh-
old, one would expect to have all particles in a S-wave.
Thus, the K+K̄0 system would be in an intrinsic S-wave
state subject to the full strength of the a0(980) resonance
tail. However, in the present case the contributions with
L = 0 or 1 are of the same order of magnitude. Further-
more, as commented above, if the π+η system does couple
just weakly to the P -waves, as we will argue below that
this is the expected behaviour, then the reaction mecha-
nism establishes a distinction between the K+K̄0 and π+η
production processes which is novel with respect to other
threshold production reactions.

The reaction mechanisms for K+K̄0 and π+η produc-
tion are complicated. Some approximate models have been
used in refs. [2,3] based on direct production of the a0(980)
resonance. The π+η production channels are not studied
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Fig. 1. Chiral model for the primary production used to extract the structures given in eq. (7).

there although they could in principle be accounted for
by using partial decay rates of the a0(980) into KK̄ and
πη [36]. However, the arguments given above about the
unique prospects of this reaction indicate that the rates
could be quite different in the present process than those
determined by making use of standard Breit-Wigner pa-
rameterizations or related ones. Thus, substantial devia-
tions from the rates observed in the present reaction would
give further support to the method of coupled-channel
generation of that resonance as the appropriate tool to
deal with the light scalar resonances, versus static pic-
tures that consider this resonance as an object with pre-
determined decay rates into different channels, and the
final-state interactions are just taken into account via
Breit-Wigner-like modifications of the resonance propaga-
tor. Indeed, inconsistencies in the treatment of the related
f0(980) resonance as a pure Breit-Wigner or following a
Flatté formula have been recently pointed out in ref. [37]
in the reaction φ → γπ0π0.

2.2 Dynamical model based on chiral symmetry

Since we are interested in stressing the role of the final-
state interactions of the KK̄ and K̄d systems we refrain
from searching for a complete model and simply parame-
terize the original structure of the amplitude close to the
dKK̄ threshold, the region of interest for the ANKE col-
laboration. This is done in appendix A. Nevertheless, the
number of free parameters when allowing for the general
structure deduced in appendix A is too large to draw any
definite conclusion. To overcome this difficulty we consider
in the following a specific model derived from lowest-order
three-flavor chiral perturbation theory (CHPT) [38–40]
depicted in fig. 1, giving rise to two definite structures

which already illustrate the main points of our investi-
gation, namely, the extreme importance of the final-state
interactions between the mesons and between the K̄0 and
the deuteron. Then a variety of observables are evaluated
in terms of the two parameters of the theory, up to a global
normalization which will not be needed to evaluate ratios
of cross-sections and invariant-mass distributions nor to
compare with the future ANKE results. It is worth stress-
ing that, given any model accounting for the primary pro-
duction of the dK+K̄0 and dπ+η systems, the final-state
interactions can be taken into account following the gen-
eral scheme presented in appendix A.

Let us come back to fig. 1. Such diagrams involving the
production of two mesons were evaluated in ref. [41] and
have a similar structure, with some cancellations among
them. In order to see this structure we consider diagrams
1c) and 1e). The two-baryon-three-meson (BBMMM) ver-
tices are given by [41]

L(B)
1 =

1
2
(D + F )

(
n̄γµγ5u

(21)
µ p + p̄γµγ5u

(11)
µ p

)
, (3)

where uµ is a SU(3) matrix containing the meson fields
which is given explicitly in [41]. Furthermore, D � 3/4 and
F � 1/2 are the canonical SU(3) axial coupling constants.
The relevant terms for our case are contained in the u

(21)
µ

and u
(11)
µ matrix elements, and keeping in mind the non-

relativistic reduction of γµγ5, are proportional to:

u(21)
µ → 3√

2
π0

(
∂µK0K− − ∂µK−K0

)
+
√

6 ∂µηK0K− ,

u(11)
µ → ∂µπ+K0K− + π+∂µK−K0 − 2π+∂µK0K− . (4)
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Thus, diagram 1c), with a non-relativistic reduction of
γµγ5 leads to a structure

3√
2
σ(2)(pK+ − pK̄0) , (5)

which produces the KK̄ system with a relative P -wave,
while diagram 1e) leads to a structure

√
6σ(2)q , (6)

where the superscript 1(2) applies to the the baryon line to
the left(right) side of fig. 1. In addition, the initial proton
on the left(right) baryon line has three-momenta p1(p2).

The global structure of the amplitude is obtained by
considering also the σ(1)q vertex in the meson baryon
vertex to the left side of the diagram. By taking q =
p1 − pd/2, with p1, pd the momenta of the initial pro-
ton and the deuteron, respectively (we have checked that
consideration of the Fermi motion in the deuteron does not
change the final structure), we find two types of terms:

I) σ(1)(p1 − pd/2)σ(2)(pK+ − pK̄0)

−σ(1)(pK+ − pK̄0)σ(2)(p2 − pd/2) ,

II) σ(1)(p1 − pd/2)σ(2)(p1 − pd/2)

−σ(1)(p2 − pd/2)σ(2)(p2 − pd/2) , (7)

which would come from the sum of the diagrams 1c)
and f), for eq. (7.I), and diagrams 1e) and h), for eq. (7.II),
after taking into account the isospin zero of the deuteron.
Also the deuteron wave function appears with its value
at the origin, φ(0), in coordinate space neglecting the
range of the interaction, since the propagators of the pseu-
doscalar mesons in fig. 1 carry very high momentum trans-
fers. In order to take into account the antisymmetry of
the initial pp state we must subtract to the previous ex-
pressions the same amplitudes exchanging the two initial
protons. This means both spin and momentum but, since
we have S = 1 in the initial state, the wave function is
spin symmetric and then it is enough to subtract the am-
plitudes of eq. (7) exchanging p1 ↔ p2 = −p1. This leads,
up to a global factor two, to the structures:

I) σ(1)p1 σ(2)(pK+ − pK̄0) + σ(1)(pK+ − pK̄0)σ(2)p1 ,

II) −σ(1)p1 σ(2)pd − σ(1)pd σ(2)p1 . (8)

This calculation would not be complete to account for
the π exchange because the explicit use of the isospin
deuteron wave function forces also the simultaneous con-
sideration of diagrams 1d) and g) with the exchange of a
charged pion. The structure of these two latter diagrams
is different than the structure of eq. (7.I) found for π0

exchange, but it is easy to see that it is a combination of
eqs. (7.I), (7.II) and after antisymmetrization with respect
to the initial state leads again to the structures of eqs. (8).

Should the KK̄ system be in an intrinsic S-wave, L =
0, we would have eq. (8.II) and the cross-section contains
the factor p 2

d , as correctly stated in ref. [42], which largely
affects the shape of the KK̄ invariant-mass distribution.

As already mentioned, we will also consider π+η pro-
duction. One interesting property of the πη system re-
flected in chiral dynamics is that it does not couple in P -
waves to lowest order in the chiral counting [43]. It does
not couple to vector mesons either [44]. It can couple in
higher orders but such effects are suppressed by more than
one order of magnitude with respect to the dominant S-
waves [43]. This means that there are no terms of the type
of diagram 1c), d) or e) with the structure of eq. (5), and
in fact what one finds is that the matrix elements u

(21)
µ

and u
(11)
µ of eq. (3) do not contain any ππη or ηηπ terms.

However, terms of the type of diagram 1a), with the πη
system in S-wave are allowed leading to a structure of the
global amplitude of type II in eq. (8). The same comment
applies to fig. 1b) with respect to the K+K̄0 state.

One still has to take into account that in the exper-
iment only unpolarized observables are measured. This
implies an equal probability for the initial state of being
in any of the three possible total-spin projections. Tak-
ing the vector Q to represent either pK+ − pK̄0 or pd,
any of the structures shown in eq. (8) can be written as
A ≡ σ(1)p1 σ(2)Q+σ(1)Qσ(2)p1. It is straightforward to
see that the matrix elements between states |S S3〉 of well
defined third component S3 and total-spin S = 1 satisfy

〈1β|A|1α〉 = ηαβ
4
√

π√
3

|p1||Q|Y1 α−β(Q̂) , (9)

with Q̂ the unit vector in the direction of Q, YLm(θ, φ)
the usual spherical harmonics and the matrix ηαβ is given
by:

η =

+1 −1 0
+1 −1 +1
0 −1 +1

 . (10)

In this matrix the rows correspond to α = +1, 0, −1,
in order, and analogously for the columns. We have also
taken p1 parallel to the z-axis, that is, p1 = (0, 0, |p1|).

The structures and couplings of the amplitudes dis-
cussed here could be evaluated in explicit microscopic
models. Given the large energies involved, there could be
many competing mechanisms some of which would require
information, like partial decays of resonances, which is not
available at present. Given these limitations our choice
provides a reasonable and simple starting point from the
phenomenological side. It also illustrates the use of ap-
pendix A in order to take care of the final-state interac-
tions in any other model.

3 Final-state interactions

In this section we first discuss the FSI due to the meson-
meson interactions and then we will also consider the FSI
from the K̄d channel. Afterwards, we sum up both contri-
butions giving rise to our final renormalized amplitudes.
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3.1 Meson-meson final-state interactions

The K+K̄0 system in I = 1 will interact strongly and
couple to the π+η system. In [23] the input of the lowest-
order chiral Lagrangian was used as the kernel (potential)
of the Bethe-Salpeter equation which produced exact uni-
tarization in coupled channels. The extension in [19,24]
to include effects from higher-order Lagrangians, crossed
channel dynamics, explicit exchange of genuine resonance
states and scale independence did not modify the proper-
ties of the scalar sector found in [23] with only the lowest-
order Lagrangian and a cut-off of natural size, about
1 GeV, to regularize the loops. Since the divergences were
only logarithmic, the numerics are not changed when this
cut-off is substituted by a regularization scale µ ∼ 1 GeV
and a subtraction constant that can be calculated in terms
of the cut-off, see, e.g. [45,31,33] 1. Hence, given the sim-
plicity and accuracy of ref. [23], which is a limiting case of
the more general formalism developed in [24] (see, e.g. [46,
47]), we will use this approach in our present problem.

Diagrammatically it means that in addition to the tree-
level diagrams of fig. 1 we will have the diagrams of fig. 2
which contribute to the K+K̄0 production in the first line
and to π+η production in the second one. By calling G
the loop function of the mesons, the sums in fig. 2 will
dress the structure, eq. (8.II), containing the pd vector
corresponding to the case when the two mesons are in S-
wave in their CM reference system, L = 0. So we will
have:

π+η : fS
πη|p1||pd|Y1m(p̂d) → |p1||pd|Y1m(p̂d)

×
(

fS
πη + fS

πηGπηtπη→πη + fS
KK̄GKK̄tKK̄→πη

)
,

K+K̄0 : fS
KK̄ |p1||pd|Y1m(p̂d) → |p1||pd|Y1m(p̂d)

×
(

fS
KK̄ +fS

KK̄GKK̄tKK̄→KK̄ +fS
πηGπηtπη→KK̄

)
, (11)

where the subscript m corresponds to α−β in the notation
of eq. (9), all the three-momenta refer to the CM frame
of the pp system and fS

PQ are the couplings of the two
pseudoscalar meson systems with L = 0. The latter are
defined such that the minus global sign in eq. (8.II) is
reabsorbed by them. Equations (11) are more elegantly
written in a 2×2 matrix form as:

|p1||pd|Y1m(p̂d) (1 + t G)
{

fS
πη

fS
KK̄

}
, (12)

with tij the S-wave transition matrix KK̄, πη → KK̄, πη
in I = 1 with index “1” for πη and index “2” for KK̄, and
G a diagonal matrix G = diag(Gπη, GKK̄). Now taking
into account the Bethe-Salpeter equation and the on-shell
factorization of the potential in the loop functions involved
in the strong interactions proved in [23]:

t = t2 + t2 · G · t ; t = [1 − t2 · G]−1· t2 , (13)
1 While the explicit calculations have been done in di-

mensional regularization, this statement holds for any mass-
independent regularization scheme.
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where t2 contains the corresponding lowest-order CHPT
meson-meson scattering amplitudes [23], we can write
eq. (12) as:

|p1||pd|Y1m(p̂d)D−1

{
fS

πη

fS
KK̄

}
, (14)

where D = [1 − t2 · G]. Both t and G are functions of
the invariant mass of the meson-meson system, M2

I . The
previous formalism to take into account FSI was origi-
nally employed in the calculation of γγ →meson-meson
in ref. [25] and later systematized in more general terms
taking into account the analytic properties of the form fac-
tors in refs. [28,48]. In these last references it can be seen
that the above results for taking care of the FSI are exact
when considering only the right hand or unitarity cut. We
will take the functions fS

πη and fS
KK̄

as constants since we
are concerned in the energy region available to the ANKE
collaboration which reduces to just about 45 MeV above
the K+K̄0 threshold. Our approach of taking care only
of the right-hand cut corresponds to the expected dom-
inance of the resonances a0(980) and Λ(1405) which are
very close to the dK+K̄0 threshold. The chiral model of
subsect. 2.2 gives rise to real couplings fS

πη and fS
KK̄

, and
so we will take them in the following. Nevertheless, the
results of appendix A can be equally applied to real or
complex coupling functions fS

πη and fS
KK̄

.

3.2 Antikaon-deuteron final-state interactions

Now we consider the FSI from the K̄d system. The inter-
action of the K+ with the protons and neutrons is rather
weak [29] and we will neglect it. However, this is not the
case for the K̄0n interactions which are very strong close
to threshold due to the Λ(1405) resonance below the K̄0n
threshold [32,29–31]. On the other hand, what we need
here is the K̄0 interaction with the deuteron that is quite
strong close to the threshold due to extra reinforcement
of the multiple scattering of the K̄ in the deuteron as
proved in multiple evaluations of this quantity using Fad-
deev equations [49–53]. A reanalysis of this quantity to
the light of the new K̄N amplitudes generated in the chi-
ral dynamical approach of [30] was done in [54] within
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the fixed scatterer approximation for the deuteron, which
proves rather accurate comparing the results with those of
the non-static calculation of [53]. A sizeable K̄d scattering
length of about (−1.6+i1.9) fm is obtained in [54]. In order
to take into account this extra interaction, we first extrap-
olate the results of the K̄d scattering amplitude at thresh-
old of [54] to the small finite K̄ energies of the ANKE
experiment [1]. For this purpose, we rely upon the results
for the K̄N scattering matrix found in [30](fig. 9) which
show a drastic reduction of the real part of tK−p + tK−n

at
√

s � 1450 MeV. Taking into account this fact plus the
approximate good results of the impulse approximation
for the imaginary part of the K̄d scattering length and
the fast decline of the real part of the amplitudes from
threshold on, suggest a quadratic interpolation between
the results at threshold and the impulse approximation at√

s � 1450 MeV and beyond. Hence, for the general and
illustrative purposes of the present chiral model to the pri-
mary production amplitudes of the KK̄ and πη channels,
the following parameterization is expected to provide a
sufficiently accurate description of the K̄d scattering am-
plitude:

Re tK̄d(M̃B) = a(M̃B −M̃B0)2 +b(M̃B −M̃B0)+c , (15)

with

a = 4.32 · 10−4 MeV−3 , b = −1.55 · 10−2 MeV−2 ,

c = 0.13MeV−1 , M̃B0 = 1432MeV , (16)

where M̃2
B = (pK̄0 − pd/2)2 is the invariant mass of the

K̄0 and the neutron in the deuteron. The imaginary parts
are well approximated by the impulse approximation and
are almost constants in the whole interval. We take finally

Im tK̄d(M̃B) = b′(M̃B − M̃B0) + c′ , (17)

with

b′ = 1.1 · 10−3 MeV−2 , c′ = −1.5 · 10−1 MeV−1 . (18)

We apply the formulae (15) and (17) for M̃B < 1.45 GeV,
and

tK̄d(M̃B) = tK̄d(1.45 GeV) , (19)

for M̃B > 1.45 GeV. We have also checked that substitut-
ing this limiting value by a larger one only modifies mildly
the resulting distributions.

The implementation of the FSI of K̄d requires to
rewrite the amplitudes of eq. (9), for Q = pK+ −pK̄0 and
Q = pd in the rest frame of the K̄d. This is easily done by
taking into account momentum conservation and the fact
that pK+ − pK̄0 is a Galilean invariant. Given the small
velocities involved in the dK+K̄0 system, we find it appro-
priate to just apply Galilean transformations. Let us first
consider the intrinsic P -wave meson-meson contribution,
eq. (8.I). In the following we denote by p� = pK+ −pK̄0 ,
and hence this contribution involves Y1m(p̂�). Since we
are considering Galilean invariance p� = p ′

�
, we then

can rewrite |p�|Y1m(p̂�) as:

d

K

K

Ko

+

o

p p

n

a)

p p

K
+

n

Ko

b)

Kod

Fig. 3. Diagrams to take into account the K̄0d FSI.

|p�|Y1m(p̂�)= |p�|Y1m(p̂ ′
�

)= |p ′
K+ |Y1m(p̂ ′

K+)
−|p ′

K̄0 |Y1m(p̂ ′
K̄0), (20)

where the primes stand for variables in the K̄0d rest frame.
The term Y1m(p̂ ′

K̄0) involves the P -wave contribution
of the K̄0 and hence we neglect its modification in the
present case of low K̄0 energies. The term Y1m(p̂ ′

K+) does
not depend on p ′

K̄0 . This implies that the deuteron and
K̄0 are in a relative S-wave and can suffer the strong K̄d
interaction. The K̄d FSI are diagrammatically represented
in fig. 3. and the corresponding terms are renormalized by
changing them by

1 + Gd tK̄d , (21)

where Gd is the meson-deuteron loop function for the
K̄N interaction. However, although the deuteron effects
appear only as recoil corrections with respect to the nu-
cleon meson-baryon GN loop function these effects can be
around mK/Md � 25% due to the large mass of the kaon,
cf. fig. 3b). The function GN is given in [31] using disper-
sion relations and a subtraction constant aK̄N = −1.82
as needed in the approach of [33] to reproduce the low-
energy K̄N results of [30] using a cut-off to regularize
the loops. Because of the already-mentioned recoil effects
and the large momentum transfer (through the shaded
areas in fig. 3), we identify Gd = GN but allow for a vari-
ation of ∼ 30% in aK̄N . Therefore, we present results for
aK̄N = −1.84 and −1.3. Having said this, we find that
eq. (20) is renormalized by the FSI as:

|p ′
K+ |Y1m(p̂ ′

K+) (1 + Gd tK̄d) − |p ′
K̄0 |Y1m(p̂ ′

K̄0) . (22)

Now, taking into account the following equalities:

p ′
K+ = pK+

Md + 2mK

Md + mK
,

p ′
K̄0 = pK̄0 + pK+

mK

Md + mK
, (23)

it is then straightforward to rewrite eq. (22) as:

fP
KK̄ |p1|

[
|pK+ |Y1m(p̂K+)

(
2 +

Md + 2mK

Md + mK
Gd tK̄d

)

+|pd|Y1m(p̂d)

]
, (24)
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where we have multiplied the previous structure by the
K+K̄0 P -wave coupling fP

KK̄
times |p1|, since both fac-

tors appear in the original production process. In addi-
tion, Md = 1875.61 MeV is the deuteron mass and mK =
495.7 MeV = (mK+ +mK̄0)/2, with mK+ = 493.677 MeV
and mK̄0 = 497.672 MeV the K+ and K0 masses, respec-
tively.

We can follow similar steps to take into account the
FSI of the K̄0d to the CM meson-meson S-wave contribu-
tion, L = 0, eq. (8.II). Considering the identity

pd = −p ′
K+

Md

Md + 2mK
− p ′

K̄0 , (25)

it then follows:

|pd|Y1m(p̂d) =

−|pK+ |Y1m(p̂ ′
K+)

Md

Md+mK
−|p ′

K̄0 |Y1m(p̂ ′
K̄0) . (26)

As discussed above the Y1m(p̂ ′
K̄0) term involves pure P -

wave and it is not renormalized by the strong K̄0d interac-
tion. Its full contribution is then accounted for by eq. (14).
Hence only the term proportional to Y1m(p̂ ′

K+) =
Y1m(p̂K+), eq. (23), is renormalized due to the S-wave
K̄0d interaction as

−fS
KK̄ |p1||pK+ |Y1m(p̂K+)

Md

Md + mK
Gd tK̄d , (27)

multiplied by the corresponding coupling constant fS
KK̄

already introduced in eq. (11).

3.3 Renormalized amplitudes

Once we have taken into account the important FSI
due to the resonant meson-meson and K̄0d interactions,
eqs. (14), (24) and (27), the renormalized dπ+η, Fπ+η,
and dK+K̄0, FK+K̄0 , production amplitudes, correspond-
ing to the transition between total-spin third components
α → β, read
√

3
4
√

π
Fπ+η = ηαβ |p1||pd|Y1 α−β(p̂d)

[
[D−1(M2

I )]11fS
πη

+[D−1(M2
I )]12fS

KK̄

]
,

√
3

4
√

π
FK+K̄0 = ηαβ |p1||pd|Y1 α−β(p̂d)

[
[D−1(M2

I )]21fS
πη

+[D−1(M2
I )]22fS

KK̄ + fP
KK̄

]
+ηαβ |p1||pK+ |Y1 α−β(p̂K+)

×
[

−Md

Md + mK
fS

KK̄Gd(M̃2
B) tK̄d(M̃B)

+fP
KK̄

(
2+

Md + 2mK

Md + mK
Gd(M̃2

B) tK̄d(M̃B)
)]

. (28)

The double invariant-mass distributions are obtained
straightforwardly from the previous equations after sum-
ming over the final-state polarizations and averaging over
the initial ones. In this way one has

d 2σπ+η

dMIdMB
=16πC |p1|

s3/2
θ(1−| cos θπ+ |)MIMB |pd|2

× ∣∣[D−1(M2
I )]11fS

πη + [D−1(M2
I )]12fS

KK̄

∣∣2 ,

d 2σK+K̄0

dMIdMB
=16πC |p1|

s3/2
θ(1−| cos θK+ |)MIMB

{
|pd|2

× ∣∣[D−1(M2
I )]21fS

πη

+ [D−1(M2
I )]22fS

KK̄ + fP
KK̄

∣∣2
+|pK+ |2

∣∣∣∣∣ −Md

Md + mK
fS

KK̄Gd(M̃2
B) tK̄d(M̃B)

+fP
KK̄

[
2 +

Md + 2mK

Md + mK
Gd(M̃2

B) tK̄d(M̃B)
]∣∣∣∣∣

2

+2|pd||pK+ | cos θK+ Re
[(

[D−1(M2
I )]21fS

πη

+[D−1(M2
I )]22fS

KK̄ + fP
KK̄

)�
(

−Md

Md + mK

×fS
KK̄Gd(M̃2

B) tK̄d(M̃B) + fP
KK̄

×
[
2+

Md+2mK

Md+mK
Gd(M̃2

B)tK̄d(M̃B)
])]}

, (29)

with s = (p1 + p2)2 for the two protons in the initial state
(
√

s = 2912.88 MeV for the ANKE kinematics considered
here), MB is the corresponding ηd or K̄0d invariant mass
and C is a normalization constant. The cosine of the an-
gle between pπ+(pK+) and pd, cos θπ+(cos θK+), can be
written in terms of MI , MB . By integrating with respect
to MI or MB in eq. (29) we can obtain the invariant-mass
distributions with respect to MB and MI , respectively.

4 Results and discussion

Apart from the absolute normalization of the amplitudes,
our chiral model for the primary production depends on
two free parameters, θ and φ, such that

fS
KK̄ = cos θ , fS

πη = sin θ cos φ , fP
KK̄ = sin θ sin φ . (30)

First, in order to show the relevance of the FSI, we
take θ = φ = 0, implying fS

πη = 0 and fP
KK̄

= 0. In fig. 4
we display several curves corresponding to dσK+K̄0/dMI

neglecting either the two considered FSI and including ei-
ther one or two of them. In the rest of this section we
take aK̄N = −1.84 unless the contrary is explicitly stated.
The distribution in the absence of any FSI (dotted line)
peaks around MI = 1003 MeV. If the K+K̄0 interaction
is switched on (dashed line) the strength is shifted consid-
erably towards low invariant-mass and the peak moves to



442 The European Physical Journal A

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

990 1000 1010 1020 1030 1040

dσ
 (

K
  K

  )
/d

M

M   [MeV]I

I

0
+

I

Fig. 4. dσ(K+K̄0)/dMI for the whole range of available MI in
the reaction pp → dK+K̄0 with

√
s = 2912.88 MeV. The thick

(thin) solid line is the full result with aK̄N = −1.84 (−1.34).
The dashed line corresponds to including only meson-meson
FSI, the dash-dotted one includes only K̄0d FSI and the dotted
line includes no FSI with a p 2

d factor for the modulus squared
of the amplitude.

about MI = 997 MeV. This is an obvious consequence of
the presence of the a0(980) resonance around 980 MeV
and the K+K̄0 distribution feels the tail of that reso-
nance which increases the strength the closer one is to
the resonance position, and hence to smaller values of the
K+K̄0 invariant mass. If one switches on only the K̄0d
FSI (dash-dotted line) the distribution is rather broad
and there is an accumulation of strength to higher values
of the MI . Finally, when all the interactions are consid-
ered (thick solid line) the peak of the distribution moves
back to lower masses around 1 GeV, where the pure phase
space peaks as well. The strength is furthermore increased
by about a factor five due to the combined effects of both
FSI. The effect of the K̄0d interaction moving the peak to-
wards the center of the distribution reflects the fact that
for these values of MI the K̄0 and the deuteron are at rest
where GdtK̄d has its maximum. Indeed, in the extremes
of the MI distribution either the kaons go together and
the deuteron goes opposite to them, or the deuteron is
produced at rest and the two kaons go back to back. In
both cases the K̄0d invariant mass is relatively far from
the K̄0d threshold situation. In addition, we also include
the full result for aK̄N = −1.3 presented by the thin solid
line. As it is clear this variation in the value of aK̄N mostly
decreases the width of the distribution, while the peak po-
sition is just slightly decreased by less than 2 MeV. Had
we further reduced the value of aK̄N , instead of increasing
it, the changes would have opposite sense.

Similar changes in strength and shape can be seen in
fig. 5 for the dσK+K̄0/dMB invariant-mass distribution
where the notation for the curves is the same as for fig. 4.
It is remarkable that the strong K̄0d interaction at thresh-
old pushes the mass distribution towards lower K̄d invari-
ant masses as a reflection of the presence of the Λ(1405)
resonance in the K̄0n system, much as in the case of the
K+K̄0 distribution where the presence of the a0(980) res-
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Fig. 5. dσ(K+K̄0)/dMB for the whole range of available
MB in the reaction pp → dK+K̄0 with

√
s = 2912.88 MeV.

The thick (thin) solid line is the full result with aK̄N =
−1.84 (−1.34). The dashed line corresponds to including only
meson-meson FSI, the dash-dotted one includes only K̄0d FSI
and the dotted line includes no FSI with a p 2

d factor for the
modulus squared of the amplitude.
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Fig. 6. The upper panel shows the peak position of
dσ(K+K̄0)/dMI and the lower one the width of the same dis-
tribution for aK̄N = −1.84 as functions of θ and φ (in radians).

onance pushed the distribution towards low K+K̄0 invari-
ant masses. Here the effects of decreasing the modulus of
aK̄N are opposite to those in the K+K̄0 mass distribution
pushing the distribution to higher invariant masses.

In fig. 6 we show as a function of θ and φ the peak po-
sition of the dσK+K̄0/dMI distribution and its width. The
width is defined to be the difference between the values
of MI for which the number of events is half of the maxi-
mum value. The same is shown in fig. 7 for a different value
of the subtraction constant aK̄N , i.e. aK̄N = −1.3. The
advantage of these figures is that one can approximately
describe the shape of the distribution as a function of θ
and φ.
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dσ(K+K̄0)/dMI and the lower one the width of the same dis-
tribution for aK̄N = −1.3 as functions of θ and φ (in radians).
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Fig. 8. σ(π+η)/σ(K+K̄0) as a function of θ and φ (in radians).
MI(π

+η) > 950 MeV when calculating σ(π+η).

Next, we investigate the role of the θ and φ parame-
ters in the total production of π+η and K+K̄0. The π+η
production is mostly done around the a0(980) resonance
region. In fig. 8 we show the ratio between the integrated
π+η production cross-section between MI = 950 MeV and
the end of its phase space and the K+K̄0 production cross-
section in all its available phase space. We can see in the
figure that for most of the values of θ and φ the π+η pro-
duction rate is substantially larger than that of K+K̄0.
It is interesting to point out that even in the case when
there is no primary π+η production so that fS

πη = 0 (θ = 0
and any φ or φ = π/2, 3π/2 and any θ), the final-state
interactions starting from primary K+K̄0 production can
lead to a π+η cross-section an order of magnitude bigger
than that of the K+K̄0. One also finds interesting inter-
ference effects for some values of θ and φ that can reinforce
the π+η production as compared to the K+K̄0 as well as
other situations when the K+K̄0 is produced more copi-
ously than the π+η channel. The former occurs for values
of φ around π and 2π and of θ around π/2 so that fS

KK̄
� 0

and fP
KK̄

� 0 with σ(π+η) > 30σ(K+K̄0), while the lat-
ter tends to happen for a wide range of parameters leading
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Fig. 9. dσ(π+η)/dMI . Solid line: full result; the dotted line
does not include FSI, with a factor p 2

d from the modulus
squared of the amplitude. The thin solid line corresponds to the
full result but divided by p 2

d times 2502 MeV2 (to normalize
the curve to the full result at the K̄K threshold).

to K+K̄0 invariant-mass distributions peaked at values of
MI higher than 1010 MeV. This spectacular dependence
of the ratio of π+η to K+K̄0 production on the values
of primary production weights θ and φ should obviously
serve as a stimulation for the experimental measurement
of the π+η production cross-section.

It is interesting to see also the shape of the π+η
invariant-mass distribution, which is independent of aK̄N .
We show in fig. 9 by the thick solid line that the nor-
malized dσπ+η/dMI event distribution for fS

πη = 0 and
fP

KK̄
= arbitrary (|fP

KK̄
| ≤ 1, see eq. (30)) has no

clear signal of the a0(980) resonance around the values
of MI = 980 MeV. This seems somewhat surprising since
the coupled-channel approach definitely generates the res-
onance and we have already observed the effects of its tail
in the K+K̄0 invariant-mass distribution. The lack of res-
onance structure is due to the P -wave character of the re-
action and the appearance of the |pd|2 factor in |Fπ+η|2.
This factor grows as the invariant mass decreases and dis-
torts the a0(980) shape. In fact it is interesting to observe
that if we divide dσπ+η/dMI by |pd|2, which is also shown
in the figure by the thin solid line, the resonance shape ap-
pears with a width of around 40 MeV and with the peak
at 990 MeV. Noticing this fact is also important from the
experimental point of view in order to extract properties
of the a0(980) resonance in this reaction.

We can see that the distributions are rather depen-
dent on the values of the θ and φ. This fact could be
used to extract the optimal parameters from the data on
K+K̄0 distributions, assuming that a good fit is possible.
Should this be the case, the theory would then predict
absolute rates and mass distribution for the π+η produc-
tion or other experimental yields, which would be a real
prediction of the approach in spite of having started from
two unknown parameters.
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5 Conclusions

In this paper we have performed a phenomenological study
of the pp → dK+K̄0 and pp → dπ+η reactions close to
threshold presently studied by the ANKE collaboration
at COSY. We have emphasized the relevance of the final-
state interactions which is quite important in the present
case due to the proximity of the K+K̄0 system to the
a0(980) resonance and the K̄0n system to the Λ(1405)
resonance. We found that the consideration of these inter-
actions has important consequences both in the shape and
strength of the invariant-mass distributions. We also stud-
ied the interaction of the two final states K+K̄0 and π+η
by means of a coupled-channel chiral unitary approach
which generates both the a0(980) and Λ(1405) resonances.
Given the freedom in the primary production amplitudes
we parameterize them in terms of three types of structures
involving � = 1, L = 0 and � = 0, L = 1 for the K+K̄0

channel and the only allowed � = 1, L = 1 for π+η produc-
tion. This left us with two independent parameters (up to
a global normalization of one cross-section) together with
a subtraction constant with an expected uncertainty of
about 25%. The sensitivity of the shapes of the K+K̄0

and K̄0d invariant-mass distributions to those parameters
was investigated anticipating that the measurements of
these quantities could serve to fix them. This would allow
us to make absolute predictions for π+η production due
to the dynamics of coupled channels generated in the chi-
ral unitary scheme followed here. Other quantities which
might be measured could also be predicted in that case.
Furthermore, we observed that the π+η production was
dominated by the a0(980) resonance and that a clear sig-
nal for the relevance of the K̄0d FSI would be the obser-
vation of a peak towards low K̄0d invariant masses in the
dσK+K̄0/dMB differential cross-section. On other hand,
we have also pointed out that the a0(980) would not be
clearly visible in the data for dσπ+η/dMI because of the
|pd|2 factor due to the P -wave character of the reaction
which distorts the shape of the resonance. Yet we found
that the shape of the resonance was regained by dividing
dσπ+η/dMI by |pd|2.

Finally, we have also provided general expressions to
take into account the FSI derived in this paper for any
other more specific model of the primary production mech-
anism.

The study done here clearly shows how the measure-
ments performed or planned with those reactions provide
basic information on the strong interaction underlying
the meson-meson and meson-baryon dynamics and should
produce complementary and valuable information to the
one obtained from other processes.
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Appendix A. General structure of the
process pp → dPQ

Let us denote by � the relative orbital angular momen-
tum of the deuteron and the CM motion of the two pseu-
doscalar system PQ and by L the orbital angular momen-
tum of the latter in their own CM frame. As discussed in
sect. 2 close to the dK+K̄0 threshold the leading contri-
bution stems from � = 1, L = 0 and � = 0, L = 1. We
denote by �0 the orbital angular momentum of the two
protons in the initial state and, as also discussed above,
the only possibilities are �0 = 1, 3. Finally, the symbol Sd

refers to the total spin of the deuteron, Sd = 1, with its
third component indicated by Sd

3 . Analogously S refers to
the total spin of the pp system, which is also fixed to be
1, and S3 indicates its third component.

Keeping only the components relevant for our reaction,
we can consider the following angular momentum decom-
position of the final dPQ state as:

|d(Sd
3 ,pd)P (k1)Q(k2)〉∝

∑
m,J

C(Sd
3 m|1 1 J)

(
Y1m(p̂d)∗

× |J, S3 + m; � = 1, L = 0〉
+Y1m(k̂)∗|J, S3+m; �=0, L=1〉

)
+ ... , (A.1)

where k is the PQ-CM three momentum of the pseu-
doscalar P , the symbol C(m1 m2|j1 j2 J) is the Clebsch-
Gordan coefficient for the composition of two angular
momenta j1 and j2 to give the total one J and the el-
lipses simply denote other terms of no interest here. It is
worth noting once again that for the π+η system only the
� = 1, L = 0 component is relevant due to the absence
of resonant interactions of this system with the deuteron.
Performing an analogous decomposition for the initial pp
state we can write for the transition matrix element:

〈d(Sd
3 ,pd)P (k1)Q(k2)|T |p(p1)p(p2), S3〉 =∑

J,�0

C(Sd
3 S3 − Sd

3 |1 1 J) C(S3 0|1 �0 J) Y1 0(p̂1)∗

×
(
Y1 S3−Sd

3
(p̂d)T

J PQ
10�0

+ Y1 S3−Sd
3
(k̂)T J PQ

01�0

)
, (A.2)

where p1 = (0, 0, |p1|) and because of the small velocities
involved at around the dK+K̄0 threshold we can also write
Y1m(p̂�) instead of Y1m(k̂) with p� defined in sec. 3. Note
as well that we take the invariant-matrix elements T J πη

01�0
=

0, due to the absence of any resonant S-wave interaction
between the π+η system and the deuteron. In order to
take care of the final-state interactions due to both the
meson-meson and K̄d S-wave interactions one can proceed
in a completely analogous way to that of sect. 3. First
we define the related quantities T J PQ

10�0
= |pd|AJ PQ

10�0
and
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T J PQ
01�0

= |p�|AJ PQ
01�0

and second the AJ PQ
�L�0

can be taken,
if desired, as constants. In this way one has:

Fπ+η = |pd|Y1 S3−Sd
3
(p̂d)

∑
J,�0

Y�0 0(p̂1)∗

×C(Sd
3 S3 − Sd

3 |1 1 J)C(S3 0|1 �0 J)

×
(

[D−1(M2
I )]11A

J πη
10�0

+ [D−1(M2
I )]12AJ KK̄

10�0

)
,

FK+K̄0 = |pd|Y1 S3−Sd
3
(p̂d)

∑
J,�0

Y�0 0(p̂1)∗

×C(Sd
3 S3 − Sd

3 |1 1 J)C(S3 0|1 �0 J)

×
(
[D−1(M2

I )]21A
J πη
10�0

+ [D−1(M2
I )]22AJ KK̄

10�0 + AJ KK̄
01�0

)
+|pK+ |Y1 S3−Sd

3
(p̂K+)

∑
J,�0

Y�0 0(p̂1)∗

×C(Sd
3 S3 − Sd

3 |1 1 J)C(S3 0|1 �0 J)

×
[

−Md

Md + mK
Gd(M̃2

B) tK̄d(M̃B)AJ KK̄
10�0

+
(

2 +
Md + 2mK

Md + mK
Gd(M̃2

B) tK̄d(M̃B)
)

AJ KK̄
01�0

]
. (A.3)

Once a model for the primary production mechanism
of the PQ systems is developed, the functions T J PQ

�L�0
can

be determined and from them the FSI can be taken into
account by eq. (A.3). We can do this exercise for our previ-
ous model by comparing eq. (A.2) of the present appendix
with eq. (9), times the appropriate couplings constant fS

PQ

or fP
KK̄

. Taking �0 = 1, since our model only involves one
power of p1, we then have:

T 0 KK̄
1 0 1 =−4

√
3πfS

KK̄ |p1||pd| ,

T 0 KK̄
0 1 1 =−4

√
3πfP

KK̄ |p1||p�| ,

T 1 KK̄
1 0 1 =

8
√

π√
3

fS
KK̄ |p1||pd| , T 1 KK̄

0 1 1 =
8
√

π√
3

fP
KK̄ |p1||p�|,

T 2 KK̄
101 =0 , T 2 KK̄

010 =0 ,

T 0 πη
1 0 1 =−4

√
3πfS

πη|p1||pd| , T 1 πη
1 0 1 =

8
√

π√
3

fS
πη|p1||pd|,

T 2 πη
101 =0 . (A.4)
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